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Abstract—The general differential equations for unsteady uni-dimensional heat conduction in composite
slabs were solved numerically by using the finite element method under the boundary conditions

including the contact resistance between the layers.

The numerical results of transient temperature response agreed well with the analytical solution for
the simple case and the experimental results for the various composite slabs. The effect of each factor on
temperature response was clarified by examining the numerical and experimental results.

NOMENCLATURE

Bi, By, Biotnumbers, B; = lyx;/ky, By = hyxi/ky;

Cps specific heat of material;

d, thickness of material;

hi, heat-transfer coefficient due to contact re-
sistance between ith layer and (i + 1)th;

By By, heat-transfer coefficients between upper
surface and surroundings, and lower sur-
face and surroundings;

k, thermal conductivity of material;

N, number of subdivisions;

Gi-4u.  heat fluxes at upper surface and lower;

T. temperature;

1,1, T,2, ambient temperature;

t, fime;

X, normal distance from upper surface to

point.

Greek symbols

o, thermal diffusivity of material;
B, parameter for heating rate;
7, ratio of thermal conductivity, =k,/k,;
3, arbitrary constant;
g, emissivity of material;
L, ratio of thickness, =d,/d; = (x;—x,)/x;;
7, ratio of thermal diffusivity, = a,/x,;
&, dimensionless distance, = x/x;;
X density of material;
G, Stefan—Boltzmann constant;
T, Fourier number, = o, ¢/x%;
¢, dimensionless temperature.
Subscripts
i, ith layer;
J jth subdivided point.

INTRODUCTION

In tHE design of the wall of industrial furnaces,
chemical reactors and constructions, it is important to
examine heat transfer through the composite wall as
well as structural strength. Analytical results of heat
transfer in steady state are often useful for many
practical designs. The analysis of heat transfer in
unsteady state, however, is necessary in considering
the optimization of cyclic operations and starting up
operations and similar problems.

The problem of heat transfer through the com-
posite wall has been studied by Carslaw and Jaeger
and many other investigators [I-7]. Few papers,
however, have been published on heat transfer in
unsteady state from the engineering viewpoint. Further-
more, the results in these papers may not be applied
to practical engineering designs, because the theoretical
analysis are restricted under the special conditions.

In this study, unsteady heat transfer through the
composite slab of two or three layers was analysed
under more general conditions. The basic differential
equations for uni-dimensional heat conduction in the
composite slab were derived in consideration of the
temperature dependency of thermal properties of com-~
posing materials, and solved numerically by using a
finite element method [8] under the boundary con-
ditions including the contact resistance between layers.
The variations with time of temperature distributions
in the various composite slabs were measured under
some boundary conditions, and the measurement re-
sults were compared with the calculated ones. In
addition, the influence of each factor on temperature
response and the availability of this analysis were
discussed.
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THEORETICAL ANALYSIS
As shown in Fig. 1. a composite slab is composed
of n layers with different thermal properties. The
differential equation for unsteady uni-dimensional heat
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FiG. 1. Schematic diagram.

conduction in the ith layer may be expressed as

X;io1 S XK X,
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The boundary conditions including the contact re-
sistance between layers are given as follows

t>0.x=x,=0;
cT0, 1)
AL B v |
Cx
X = X;
CCTdxny ﬁTH(\ t)
oo i+ 0x (2)
= h(T{x;. ) = Tio(x;. 1)
i=1,2..... n—1)
X = X,;
AT x,. 1)
Ry = 4u
éx

J

where, g and g are heat fluxes due to convection and
radiation at the surface x = 0, x = x,,, respectively, and
h; denotes the contact heat-transfer coefficient between
the ith layer and the (i + )th.

The initial conditions are

r=00<x<x,; Ti{x, 0y = T(x). (3)

It is impossible to solve equation (1) analytically
under the conditions given by equations (2) and (3) in
consideration of the temperature dependency of
thermal properties. Therefore, equation (1) should be
solved by a numerical method, and so the following
finite element method was introduced in this study.

The Galerkin weighted residual process is used with
equation (1) [8]. Multiplying both sides of equation
(1) by an arbitrary continuous function f;(x) which is
differentiable at least once. and integrating the resulting

equation from x;_, to x;, we obtain

X ST x. Xpoon o}
J (‘mpii"lix ! ff(»\‘)dx:j N k.(n )f(Y)dV

ot X (Y
[ X ‘\T [ ol
[f, (x)k 4’} - j g CTD U 4 g
ax oy ) Cx ’x

The weighting function f;(x) shall be defined as follows:

N,
X-1 € X< X3 filx) Z (3i.j/z:<j (5)
i=0
where
. X=X
Jio= 1‘*4;“‘" (Xjo1 € X x0+5)
=0 (X < Xio(. X > X4 +5;)
(1_1) -1
L
(xio1+ (=18 < x< X2+ Jsy)
1+1)s + X1~
Si
(i HJsi < x< x5+ Dsy)
=0 (x<xX; +(—Ds;. x> x; 1+ (j+1sp)
. X—X;+S;
fin=——— (X;—s5; < x< x3)
S
Xi—Xi—1
§; = e
N,

When T; at the jth subdivided point is named
T.;(i=0.1,....N;) and T(x) is assumed to be linear
with x in the interval x;_; +(j—1)s; < x < x;_ | +js;.
Ti(x) is expressed as

X H (= D8 < X< x4

\[)_ ijtt’

The values of ¢,;, p; and k; in the temperature range
T ;-1 < Tix) < T, ; are approximated to those at the
mean temperature (T j-1+ T ;)/2, which are rep-
resented by c,; ;. p; ; and k; ;, respectively.

The rearrangement of equation (4) referred in Appen-
dix gives the following ordinary differential equations.

Ct=AT+B (N

where, T, T and B are column matrices, and A and C
are tridiagonal matrices, all elements of which are
shown in Appendix.

Now, T(t) and T(t+ At) shall be denoted T’s at time
t and t+ At, respectively. When T(¢+ A¢) is expanded
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into a Taylor series about ¢ and its terms higher than
3rd order are neglected, T{t-+ At} is expressed as

2
T +AD) =T+ AT + 9—}-- t(e). 8)

The elimination of T(t) with both equation (8) and
the equation obtained by differentiating equation (8)

yields
Tt+AD) =T+~ [T(t +T{t+AD]. 9)

In addition, equation (7) gives

nm-t-u\ _ (5-!-1‘\ " - 155
i{i) = i)+’ (10)
CUr AT (14 Ar) = A“*A‘)T(H-At) B+an,
With tha sacumntion that AGHA0 _ Al Qu+an _ o
¥y iU Uic aaouxupuuu that A .~ (=4

*80 = CY in equation (10), substitution of
equation (1()) into equation (9) yields

-1
T(t+AD) =T() +%[{C“>}“‘X(r) +{Cm ~§A“’}

{X(m ABICO}- *xmﬂ an

where,
X(1) = AUT(1)+ BY.

Equation (11) is the final form of the numerical
solution of equation (1) obtained by using the finite
element method. The procedure of the calculation of
equation (11) is as follows: First, the column matrix
X(0) is calculated by T(0), A and B'. Secondly. the
temperature distribution at time Az, T(At), is calculated
from equation {11). Thirdly, T(2A¢) is calculated in the
same manner. Thus, the variation with time of tem-
perature distribution is obtained by repeating this
procedure successively.

EXPERIMENTAL APPARATUS AND METHOD
Thec rnmnm:m: slab used for measurement was layers
of flat dlSCS of 300 mm in diameter. Each of the discs
was different in thickness and thermal properties as

tabulated in Tabie 1.
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The outline of the experimental apparatus is shown
in Fig. 2. The copper plate {300 mm square 4mm in
thickness} was put on the upper surface of the com-
posite slab, and the circinate nichrome wire heater of
2kW in capacity was placed on the copper plate. The
fower surface of the composite slab was exposed to
air, and the side surface was insulated with insulation
bricks and polystyrene foam. CA thermocouples of
0:1mm in diameter and an automatic temperature
recorder were used for temperature measurements. The
temperature measurement points are shown in Fig. 2.

( Polystyrene foam

4 Nichrome
heater

~ Copper

L plate

- lron
supporter

*/»Composite stab

-~-Temp. measurement point

Fi1G. 2. Experimental apparatus.

Tha $ommsmswmbizng s3v tho oln e s omes ey § NP

j @ iiv lClu!JCldlUlC xu (8314 bldU was ulCdbu!C\L Wll!l lHC
thermocouple which was placed in the hole of I mm
in diameter drilled to the half of the thickness at the
center. All the thermocouples were set in the cut of
1 x I mm made on the surface radially. In the heating
experiment, heating rate was controlled manually with
a slide-transformer, and the temperature rise of the
lower surface of the copper plate was adjusted to the
appointed heating curve:

Ty = Ty — (T — Tio) €Xp(—ft)

where, Ty, = 200°C, Tyo=30°C and f=09h .
At the same time, the variations of temperature with

time were measured at the above-mentioned noints. In
€ré measur N A00Ve-Mmenuones points. in

the cooling experiments, the composite slab was heated
up to the steady state, and then cooled by sudden
removal of the heater and the copper plate.

Table 1. Values of physical properties of composing materials

Thermal Thermal
Thickness Density Specific heat conductivity diffusivity Emissivity
Material d(m) plkg/m?) cpkeal/kg®C) k(kcal/mh°C) m?/h) g
Gypsum A
board 0019 870 026 01 44 x 1074 09
Bl insulation
brick 003 660 0-20 017 3% 1073 08
Low carbon
steel 003 7800 011 40 47%x1072 0S5
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RESULTS

First, the accuracy of this numerical analysis was
examined by comparing with the analytical solutions
under the restricted conditions. Mayer [2] has solved
analytically the problem of unsteady heat conduction
in the composite slab of two layers under the following
conditions: no flux across one surface and prescribed
flux across the other surface, and neglect of contact
resistance and the temperature dependency of thermal
properties.

An example of comparison of this numerical solution
with Mayer’s solution is shown in Fig. 3 as for the
composite slab of gypsum board and low carbon steel.

composite slab T(x0)=0
_gypboard 7, =
steel T2 hi=30
100 }
[i] [aY
L.=0
O #y=0
I 20 e
049,” e
Y
— Numerical sol.
ol & Mayers analytical sol.
1 2 3 4 5
#, h

FiG. 3. Comparison of numerical solution with Mayer’s
solution.

In the numerical calculation, N, and N,, the numbers
of subdivisions, were 50 and 30, respectively, and At,
the time interval, was 3-0 x 1073 h.

As for the heating experiments, the comparisons of
experimental results with numerical solutions are
shown in Figs. 4-6. The composite slab of each figure
was gypsum board-B1 insulation brick, gypsum board-
low carbon steel and gypsum board-Bl1 insulation
brick-low carbon steel. The other experimental con-
ditions were Ty = 200-170exp(—091)°C, Ti(x,0) =
30°C and T, = 30°C in every case. In addition, in
these numerical calculations, the boundary conditions
were given as follows:

x=0; q = h(Tg—T(0.1)
x=xX.; dqu=hy(Txp 00— T2}

In equation (2'), h; can be considered to be the con-
tact heat-transfer coefficient under this experimental
condition. By using Weills and Ryder’s correlation
between the contact heat-transfer coefficient and the
surface roughness [9], i in every case was assumed
to be approximately 5000 kcal/m? h “C from the surface
roughness of copper. For such a value, the difference

2)

composite slab O Composite slab Q
[ gypboard 7 [ Blbrick 7
Blbrick 1 | gyp.board 1,

Twr’(o'”

200

100

F1G. 4. Temperature response in heating of the com-
posite slab (gypsum board-B1 insulation brick).

composite slab (D composite slab @

gyp.board 7 steel 7
steel 7 gyp.board 7
200t 701

K100

F1G. 5. Temperature response in heating of the composite
slab (gypsum board-low carbon steel).

Composite slab (D Composite slab @

_gypboard 7 Steel 7
Blbrick 7 gyp-board 7
steel 7 31brick 7

FiG. 6. Temperature response in heating of the composite
slab (gypsum board-Bl insulation brick—low carbon
steel).

between T and T;(0.t) was less than 0-2°C in Figs.
4-6. The heat-transfer coefficient h; was given as
follows:

hy = hyo+eao{T,(x,. 1)+ 1, + 5460}
X T Xy, 1) + 273:0)% + (T, + 273-0)%)
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where, hy;, is the heat-transfer coefficient due to natural
convection, and its value was calculated from
Fishenden and Saunder’s correlation for a horizontal
plate [10]. The contact heat-transfer coefficient h; was
assumed to be approximately 3000kcal/m?h°C in
every case. This is the value for steel obtained from
the above-mentioned correlation. Furthermore, the
temperature dependency of thermal properties was
neglected, because the temperature variations were
slight under this experimental condition.

| composite slab® composite slab @

gypboard 7, | steel 7,
steel 72 gyp.board 1

200

K
100

f, h

Fi1G.7. Temperature responsein cooling of the composite
slab (gypsum board-low carbon steel).

As for the cooling experiments of the composite
slab of gypsum board—low carbon steel, the comparison
between both results is shown in Fig. 7. In this
numerical calculation, both heat-transfer coefficients
f and hy were given in the same form as the above-
mentioned Ay .

DISCUSSION

Accuracy of this numerical analysis

Figure 3 shows a good agreement between the
numerical solution and the analytical one. The similar
good agreements were also observed in the com-
parisons under other conditions. In addition, the
moderate changes of the numbers N, and N, and the
time interval At had little effect on the numerical solu-
tions (Ny = 10-60, N, = 10-40 for At = 3-0 x 1073 in
Fig. 3).

From these facts, it is concluded that this numerical
analysis using the finite element method has a good
accuracy.

Furthermore, Figs. 4-7 show a fairly good agreement
between the numerical solutions and the experimental
results. It can be also concluded that this numerical
analysis is useful for a problem of unsteady heat
transfer through the composite slab under more general
conditions.

Temperature response

In this section, temperature response is discussed in
the relation of the location of the materials of which
the composite slab is composed.

Figures 5 and 6 show a large difference in the manner
of temperature response between the composite slab
® and @ . Namely, the unsteady temperature rises of
the lower surface of @ in which the upper material
has smaller thermal conductivity and thermal dif-
fusivity are slower than that of @, and there results
a large difference of the rate of heat transfer between
both the composite slabs. If the rate of radiant heat
transfer at the lower surface is neglected, the steady
temperature of the lower surface and the steady rate
of heat transfer must be similar in both the composite
slabs. In addition, the difference of the rate of radiant
heat transfer between both the composite slabs has
the reverse effect. Hence, such a difference can not be
predicted from the steady temperature. As seen in
Fig. 7, such a tendency is found similarly for the case
of cooling experiments.

Figure 4, however, shows no remarkable difference
between the composite slab @ and .

As predicted from the basic equations, such a differ-
ence in the manner of temperature response for the
location may be dependent on the ratios of thickness,
thermal conductivity and thermal diffusivity of the
composing materials.

Now, we will further discuss the effects of non-
dimensional parameters on temperature response on
the basis of the results of the simplified numerical
analysis.

With the assumptions of constant thermal properties
and the neglection of contact resistance, the following
dimensionless equations are obtained from equations
(1), (2) and (3) for the composite slab of two layers.

0ps(E 1) _1(E. )

Pt it 022 (12)
O £ 52
l<ectyy 220D T0aD
0t e
1>0,=0; N
Cp1(0,
‘b%i) = Bl(¢y1 _¢1(0, ‘L'))
E=1;
_0u(n) _ ea(1,7)
B poa
$1(1,7) = $a(1,7)
E=1+(;
ép.l1+0,1) B i
_,_2?=7'(¢2(1+g,r)_¢gz)J
t1=0.820; 4160 =02050=¢;=0 (14
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where,
&1 = (Ty(x, 8}~ Tilx, YA Ty — Ta(x, 0)),
&2 = (Th(x, 1) — Ty(x, OY/(T,, — Ty(x, 0)),
T =kyt/xic, pr = at/xd, &= x/x,.
(= 0a—x)/x, y=ka/ky,
n= Cp1pxkz/cpzpzk1 = o/,
B =hxy/ky, By = yxfky.

In the meanwhile, the steady dimensionless tempera-
ture of the lower surface (¢ = 1+) is given as follows:

_¢92

4 1 ’
B“<1+E+“>+l
v B

Dimensionless temperature response was calculated
for three combinations of parameters, #, { and ¥, in
the case B; = 1000, By, = 0-5, {/y = 1-0 and ¢,(1+{) =
0-5. The results are shown in Figs. 8-10. It is found

2140 = ¢y + (15)

F1G. 8. Dimensionless temperature response for various
thermal diffusivity ratios.

F16. 9. Dimensionless temperature response for various
thermal diffusivity ratios.

1-0 <=0
$=10 £=1000 7=10 — 7=1
$70 65,705 {10 e =10
—— =100
05| g T
’ '/\‘\)5:/-0
/ | £=110
""""""""" e ——
7] — . - 3
50 100 150 300
T

F1G. 10. Dimensionless temperature response for various
thermal diffusivity ratios.

in three figures that the influence of # on dimensionless
temperature response becomes remarkable at the larger
values of { and y. Also, from these figures, the effects
of the location of materials on temperature response
become more evident quantitatively. These results must
be further discussed for the application to optimization
of cyclic operation and starting up.

CONCLUSION

The basic differential equations for unsteady uni-
dimensional heat conduction in the composite slab
were derived in the general form, and solved numeri-
cally by the finite element method under the boundary
conditions including the contact resistance between
the layers.

The numerical results were observed to agree to both
Mayer’s analytical solution and the experimental
results. It was concluded that this numerical analysis
has a good accuracy and usefulness for such a problem.
Also, the influence of each factor on temperature
response became evident by examining the numerical
and experimental results.
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REPONSE TRANSITOIRE EN TEMPERATURE DES PLAQUES COMPOSITES

et expérimentaux.

TEMPERATURAUSGLEICH IN GESCHICHTETEN PLATTEN

experimentellen Ergebnisse geklirt.

A

Résumé—On résout numériquement les équations aux dérivés partielles générales de Ja conduction
thermique unidirectionnelle dans des plaques composites, en utilisant la méthode des éléments finis avec
des conditions aux limites incluant la résistance de contact entre les couches.

Les résultats numériques concernant la température transitoire s’accordent bien avec la solution
analytique du cas simple et avec les résultats expérimentaux obtenus pour différentes plaques composites.
L'effet de chaque facteur sur la réponse en température est dégagé en examinant les résultats numériques

Zusammenfassung—Die Differentialgleichungen fiir instationdre eindimensionale Wiirmeleitung in ge-
schichteten Platten wurden in allgemeiner Form mit Hilfe der Methode finiter Elemente unter Rand-
bedingungen gelost, die den Kontaktwiderstand zwischen den Schichten einschlieBen.

Die Ergebnisse der numerischen Losung stimmten gut mit der analytischen Losung fur den einfachen
Fall und mit experimentellen Ergebnissen fiir verschiedene, geschichtete Platten iberein. Die Auswirkung
jeder EinfluBgroBe auf den Temperaturverlauf wurde durch Analysieren der rechnerischen und
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HECTALIMOHAPHASI TEMITIEPATYPHASI XAPAKTEPUCTUKA COCTABHBIX TTJIUT
Ansorauns — C MOMOLIBIO METOAA KOHEYHBIX JJIEMEHTOB TONYYEHO YHCICHHOE pelieHHe 0GuMx
nuddepeHUHATEHBIX YPaBHEHHH HECTAUHOHAPHOM OZHOMEPHOM TEIIONPOBOAHOCTH B COCTABHBIX
[UTATaX TIPH IPAHUYHBIX YCIOBHSAX, yYUTBIBAIOLUAX KOHTAKTHOE CONPOTHBIIEHHE MEXIY CIOSAMH.
Haiineno, 4TO 4MCnEHHbIE PE3YMBTATbI MO HECTAUHOHAPHOM TEMNEPATYPHOH XapaKTEpHCTHKE
XOPOLIO COTNACYIOTCH C AHANMTHYECKAM PELLEHUEM [UTS TIPOCTOTO CIY4as U C IKCIEPUMEHTATBHBIMK
pe3ybTaTaMK AJisi PA3IMYHBIX COCTABHBIX IUIMT. Ha OCHOBE aHann3a YHCAEHHBIX M IKCIIEPUMEHTATb-
HBIXPE3yJIbTATOB YTOYHEHO BIMSHHE KAXKAOro GakTopa Ha TeMIIEPATYPHYIO XapaKTePUCTHKY.
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