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Abstract-The general differential equations for unsteady uni-dimensional heat conduction in composite 
siabs were solved numerically by using the finite element method under the boundary conditions 
including the contact resistance between the layers. 

The numerical results of transient temperature response agreed well with the analytical solution for 
the simple case and the experimental results for the various composite slabs. The effect of each factor on 

temperature response was clarified by examining the numerical and experimental results. 

NOMENCLATURE 

Biot numbers,& =4x,/k,, 4, = bixlJkl; 
specific heat of material; 
thickness of material; 

heat-transfer coefficient due to contact re- 
sistance between ith layer and (i+ 1)th; 

heat-transfer coefficients between upper 
surface and surroundings, and lower sur- 
face and surroundings; 

thermal conductivity of material; 
number of subdivisions; 
heat fluxes at upper surface and lower; 
temperature; 
ambient temperature; 
time; 

normal distance from upper surface to 
point. 

Greek symbols 
thermal diffusivity of material; 
parameter for heating rate; 
ratio of thermal conductivity, = k,/kl ; 
arbitrary constant; 
emissivity of material; 

ratio of thickness, = d2/dl = (x2 -x1)/x1; 
ratio of thermal diffusivity, = CI~/CQ ; 
dimensionless distance, = x/x1 ; 
density of material; 
Stefan-Boltzmann constant; 
Fourier number, = cll t/x: ; 
dimensionless temperature. 

ith layer; 
jth subdivided point. 

INTRODUCTION 

IN THE design of the wall of industrial furnaces, 

chemical reactors and constructions, it is important to 
examine heat transfer through the composite wall as 
well as structural strength. Analytical results of heat 

transfer in steady state are often useful for many 
practical designs. The analysis of heat transfer in 
unsteady state, however, is necessary in considering 

the optimization of cyclic operations and starting up 
operations and similar problems. 

The problem of heat transfer through the com- 

posite wall has been studied by Carslaw and Jaeger 
and many other investigators [l-7]. Few papers, 

however, have been published on heat transfer in 

unsteady state from the engineering viewpoint. Further- 
more, the results in these papers may not be applied 

to practical engineering designs. because the theoretical 
analysis are restricted under the special conditions. 

In this study, unsteady heat transfer through the 
composite slab of two or three layers was analysed 
under more general conditions. The basic differential 
equations for uni-dimensional heat conduction in the 
composite slab were derived in consideration of the 

temperature dependency of thermal properties of com- 

posing materials, and solved numerically by using a 
finite element method [S] under the boundary con- 
ditions including the contact resistance between layers. 
The variations with time of temperature distributions 
in the various composite slabs were measured under 
some boundary conditions. and the measurement re- 
sults were compared with the calculated ones. In 
addition. the influence of each factor on temperature 
response and the availability of this analysis were 
discussed. 
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THEORETICAL ANALYSIS 

As shown in Fig. 1. a composite slab is composed 
of IZ layers with different thermal properties. The 
differential equation for unsteady uni-dimensional heat 

i I L LQrI I i x=0 

1 st layer r; x=x, 
2nd layer 7; 

:x=x2 

/ th layer r 
X=X 

FK;. I. Schematic diagram. 

conduction in the ith layer may be expressed as 

Xi_, < .u< zj: 

“pipi-- -=/--kiC?!C! i7J.Y. t)  ̂

it 

i=1,2 .,,,, n. (1) 

(‘s i.x 

The boundary conditions including the contact re- 
sistance between layers are given as follows 

?7J.Y,. t) 
-ki ~ 

?7;,,(Si, t) 

iz 
= -k,+] ~~~~__.~~~~ 

(7x > (2) 

= 12,(7Jx,. I)- 7;+1(si, t)) 

(i= 1,2.,.,.12-l) 

where, LJ, and qi, arc heat fluxes due to convection and 
radiation at the surface x = 0, x = x,, respectively, and 
hi denotes the contact heat-transfer coefficient between 

the ith layer and the (i+ 1)th. 
The initial conditions are 

r=o.og .X< x,; T(.X, 0) = 7;(X). (3) 

It is impossible to solve equation (1) analytically 
under the conditions given by equations (2) and (3) in 
consideration of the temperature dependency of 
thermal properties. Therefore, equation (1) should be 
solved by a numerical method, and so the following 
finite element method was introduced in this study. 

The Galerkin weighted residual process is used with 
equation (1) [8]. Multiplying both sides of equation 
(1) by an arbitrary continuous function f;(x) which is 
differentiable at least once. and integrating the resulting 

equation from xi-, to xi. we obtain 

The weighting function ,fi(.x) shall be defined as follows: 

X-1 d X < .uj; f;(X) $ &,j;,, (5) 
i=0 

where 

= 0 (X < .Y,~1. .Y > Xi-,+Si) 

f, j = “_dLI i’Ii” 

(Xi~1+(j_i)Si~ X6 ?ci-l+jSi) 

(j+ l)si+.ui_,-X 

sj 

(Xi-1 + jsi < X d .Yi&l + (.j+ l)S,) 

=O (.Y<.~~_~+(,j-l)Si.Y~X,~~+(j+l)S~) 

When 7; at the jth subdivided point is named 

7;,j( j = 0.1, . NJ and T&c) is assumed to be linear 
with x in the interval .yiml + (,j- 1)~~ < x < xi_, + jsi. 

T(x) is expressed as 

The values of cPl 1 pi and ki in the temperature range 
7;,j_1 < T(x) < 7;,j are approximated to those at the 
mean temperature (7;,j_, + 7;,j)/2. which are rep- 
resented by cPi, j, pi, j and ki, i, respectively. 

The rearrangement of equation (4) referred in Appen- 
dix gives the following ordinary differential equations. 

Ct =AT+B (7) 

where, T, t and B are column matrices, and A and C 
are tridiagonal matrices, all elements of which are 
shown in Appendix. 

Now, T(t) and T(t + At) shall be denoted T’s at time 
t and t+At. respectively. When T(r+At) is expanded 
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into a Taylor series about t and its terms higher than 

3rd order are neglected, T(t+ At) is expressed as 

T(t+At) = T(t)-t A&(t)+ $$). (8) 

The elimination of ‘I(t) with both equation (8) and 
the equation obtained by differentiating equation (8) 

yields 

T(t-t-At) = T@)+;[t(t)+t(t+Ar)]. 

In addition, equation (7) gives 

C"'t(t) = A”‘T(t) + B(‘) 

(9) 

C('+"')t(c+At) = A(‘+*‘)T(t+At) + BcrtA’). 
(10) 

With the assumption that A(““) = AtL’, B(‘+A” = B(” 

and CYiAt) = C(*) in equation (lo), substitution of 

equation (10) into equation (9) yields 

where, 

X(r) = A”‘T(t) + B(‘). 

Equation (11) is the final form of the numerical 

solution of equation (1) obtained by using the finite 
element method. The procedure of the calculation of 
equation (11) is as follows: First, the column matrix 
X(0) is calculated by T(O), A(O) and B(O). Secondiy, the 
temperature distribution at time At, T(At), is calculated 

from equation (II). Thirdly, T(2At) is calculated in the 
same manner. Thus, the variation with time of tem- 

perature distribution is obtained by repeating this 
procedure successively. 

EXPERIMENTAL APPARATUS AND METHOD 

The composite slab used for measurement was layers 
of flat discs of 300mm in diameter. Each of the discs 
was different in thickness and thermal properties as 
tabulated in Table I. 

The outline of the experimental apparatus is shown 

in Fig. 2. The copper plate WI0 mm square, 4 mm in 
thickness) was put on the upper surface of the com- 
posite slab, and the circinate nichrome wire heater of 
2 kW in capacity was placed on the copper plate. The 
lower surface of the composite slab was exposed to 
air, and the side surface was insulated with insulation 

bricks and polystyrene foam. CA thermocouples of 
0.1 mm in diameter and an automatic temperature 

recorder were used for temperature measurements. The 
temperature measurement points are shown in Fig. 2. 

nsulation bricks 

--Composite slab 

-+Temp measurement point 

FIG. 2. Experimental apparatus. 

The temperature in the slab was measured with the 
thermocoupIe which was placed in the hole of 1 mm 
in diameter drilled to the half of the thickness at the 

center. All the thermocouples were set in the cut of 
1 x 1 mm made on the surface radially. In the heating 

experiment, heating rate was controlled manually with 
a slide-transformer, and the temperature rise of the 

lower surface of the copper plate was adjusted to the 
appointed heating curve: 

r, = T,,-KY,-T,o)exP(-Br) 

where, THac = 2oo”C, THo = 30°C and fi = 0.9 h-‘. 

At the same time, the variations of temperature with 
time were measured at the above-mentioned points. In 
the cooling experiments, the composite slab was heated 

up to the steady state. and then cooled by sudden 
removal of the heater and the copper plate. 

Table I. Values of physical properties of composing materials 

Material 
Thickness 

44 
Density 

p(kg/m3) 
Specific heat 
c,(kcal/kg”C) 

Thermal 
conductivity 

li(kcal/m h”C) 

Thermal 
diffusivity Emissivity 
a(m*/h) e 

Gypsum 
board 
Bl insulation 
brick 
Low carbon 
steel 

0.019 870 026 0.1 4.4 x lo-& 0.9 

0.03 660 0.20 0.17 1.3 x lo-3 D8 

0.03 7800 0.11 40 4.7 x lo‘* 0.5 
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RESULTS 

First, the accuracy of this numerical analysis was 
examined by comparing with the analytical solutions 

under the restricted conditions. Mayer [2] has solved 

analytically the problem of unsteady heat conduction 
in the composite slab of two layers under the following 
conditions: no tlux across one surface and prescribed 

flux across the other surface, and neglect of contact 

resistance and the temperature dependency of thermal 
properties. 

An example of comparison of this numerical solution 

with Mayer’s solution is shown in Fig. 3 as for the 

composite slab of gypsum board and low carbon steel. 

Composite slab 0 COm oslte slab a 2oo~ 
0 

li 

100 

- exp 

01 
1 2 3 4 

t, h 

Compos!te slab TkOl= 0 
_%!I? board. -L 

steel fi 
hl=30 

100 _______ 
r _ 71 Lb b 

L/ 7;fo,tl G2= 0 
h,= 0 

1 2 3 4 
f, h 

FIN. 3. Comparison of numerical solution with Mayer’s 
solution. 

In the numerical calculation, N, and AJ,, the numbers 

of subdivisions, were 50 and 30, respectively, and At, 
the time interval, was 3.0 x 10e3 h. 

As for the heating experiments, the comparisons of 
experimental results with numerical solutions are 
shown in Figs. 4-6. The composite slab of each figure 
was gypsum board-B1 insulation brick, gypsum board- 
low carbon steel and gypsum board-B1 insulation 
brick-low carbon steel. The other experimental con- 

ditions were TN = 200-170exp( -0.9t)“C. 7Jx, 0) = 
30°C and q, = 30°C in every case. In addition, in 
these numerical calculations, the boundary conditions 
were given as follows: 

x=0; q,=l$(T,-T,(O,t)) 

I 
(2’) x = x.; qn = h,,(Tnbh, t) - r,,, 

In equation (2’). hi can be considered to be the con- 
tact heat-transfer coefficient under this experimental 
condition. By using Weills and Ryder’s correlation 
between the contact heat-transfer coefficient and the 
surface roughness [9], hi in every case was assumed 
to be approximately 5000 kcal/m’ h “C from the surface 
roughness of copper. For such a value. the difference 

FIG. 4. Temperature response in heating of the com- 
posite slab (gypsum board-91 insulation brick). 

206 

b-’ 

cloo 

0 

FIG. 

co~co~, 

1 2 3 4 
t, h 

Temperature response in heating of the composite 
slab (gypsum board--low carbon steel). 

0 

6 n 
Fiti. 6. Temperature response in heating ofthe composite 
slab (gypsum board&B1 insulation brickklow carbon 

steel). 

between TH and Ti(O, t) was less than 0.2”C in Figs. 
4-6. The heat-transfer coefficient 6, was given as 
follows: 

h,, =~,,+q,ajT,(x,,t)+T~2+546.0) 
x {(T,(x,. t) + 273.0)‘+ (T,,+273,0)‘) 
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where, hlc is the heat-transfer coefficient due to natural 

convection, and its value was calculated from 

Fishenden and Saunder’s correlation for a horizontal 

plate [lo]. The contact heat-transfer coefficient hi was 

assumed to be approximately 3000 kcal/m’ h “C in 
every case. This is the value for steel obtained from 
the above-mentioned correlation. Furthermore, the 
temperature dependency of thermal properties was 

neglected, because the temperature variations were 
slight under this experimental condition. 

200 

u 
h- 

100 

0 

om oslte slab@ Corn oslte slab 0 

-4 -4 

i$=T$=30 

..___ talc 

I 2 3 4 
% h 

FIG. 7. Temperature response in cooling of the composite 
slab (gypsum board-low carbon steel). 

As for the cooling experiments of the composite 
slab ofgypsum board-low carbon steel, the comparison 
between both results is shown in Fig. 7. In this 

numerical calculation, both heat-transfer coefficients 
b and !I,, were given in the same form as the above- 
mentioned /I,, 

DISCUSSION 

Accuracy of this numerical analysis 
Figure 3 shows a good agreement between the 

numerical solution and the analytical one. The similar 
good agreements were also observed in the com- 

parisons under other conditions. In addition, the 
moderate changes of the numbers N1 and N2 and the 
time interval At had little effect on the numerical solu- 
tions (N, = 10-60, N2 = lo-40 for At = 3.0 x 10e3 in 
Fig. 3). 

From these facts, it is concluded that this numerical 
analysis using the finite element method has a good 
accuracy. 

Furthermore, Figs. 4-7 show a fairly good agreement 
between the numerical solutions and the experimental 
results. It can be also concluded that this numerical 
analysis is useful for a problem of unsteady heat 
transfer through the composite slab under more general 
conditions. 

Temperature response 
In this section, temperature response is discussed in 

the relation of the location of the materials of which 

the composite slab is composed. 
Figures 5 and 6 show a large difference in the manner 

of temperature response between the composite slab 
@ and 0, Namely. the unsteady temperature rises of 
the lower surface of @ in which the upper material 

has smaller thermal conductivity and thermal dif- 
fusivity are slower than that of 0. and there results 

a large difference of the rate of heat transfer between 
both the composite slabs. If the rate of radiant heat 

transfer at the lower surface is neglected, the steady 

temperature of the lower surface and the steady rate 

of heat transfer must be similar in both the composite 
slabs. In addition, the difference of the rate of radiant 

heat transfer between both the composite slabs has 
the reverse effect. Hence, such a difference can not be 

predicted from the steady temperature. As seen in 
Fig. 7, such a tendency is found similarly for the case 

of cooling experiments. 
Figure 4, however, shows no remarkable difference 

between the composite slab @ and 0. 

As predicted from the basic equations, such a differ- 
ence in the manner of temperature response for the 

location may be dependent on the ratios of thickness, 
thermal conductivity and thermal diffusivity of the 

composing materials. 
Now, we will further discuss the effects of non- 

dimensional parameters on temperature response on 
the basis of the results of the simplified numerical 
analysis. 

With the assumptions of constant thermal properties 

and the neglection of contact resistance, the following 
dimensionless equations are obtained from equations 
(11 (2) and (3) for the composite slab of two layers. 

T>o,<=o; 7 

T=o,<>o; 41(5> 0) = 42(59 O) = $i = O (14) 
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where, 

41 = (T,(h t) - T(x, OMT,, - T,(x, O)), 

db = (G(x, t) - T(x, O))/(T,, - T,(x, O)), 

5 = kitlx:c,,p, = z,r/x:. < = x/xi. 

< = (x2-x&1, y = k2/k,, 

v = cptPrks/cps& = ~s/ar, 

4 = 4x&~, 41 = Itl,x,lk, 

In the meanwhile, the steady dimensionless tempera- 

ture of the lower surface (< = 1 + <) is given as follows: 

10 EEL 

+O,=I.o 6;=1000 y=lO - y= 1 
$,= 0 B, = 0.5 <=/o . 1_1(j 

-.- ‘7= 100 

_._.- - -.- 
_.___----~~~~_~~_~_._.._ _.._.__........... ------------- 

~ 05 -/; 
I _l_’ __A. 

oar 3 
50 100 150 ; ‘C 

441 +i) = &2 + 
l-&7* 

( >’ 
(15) 

4, I,;+; +1 

Dimensionless temperature response was calculated 
for three combinations of parameters, 9, < and y, in 

the case Bi = 1000, Bi, = 0.5, i/y = 1.0 and &(l +[) = 
0.5. The results are shown in Figs. 8-10. It is found 

I.0 
Qbl’l’O B,=lOOO y=I.O 

E--O 

$pi 0 6, = 05 c- 1.0 

- 7=0,1 
7 = I.0 

-.- ‘1=10 

5 10 15 20 25 

z 
FIG. 8. Dimensionless temperature response for various 

thermal diffusivity ratios. 

B 0.5 

0 

z 

FIG. 9. Dimensionless temperature response for various 
thermal diffusivity ratios. 

'0 

T 

FIG. 10. Dimensionless temperature response for various 
thermal diffusivity ratios. 

in three figures that the influence of q on dimensionless 
temperature response becomes remarkable at the larger 

values of < and y. Also, from these figures, the effects 
of the location of materials on temperature response 
become more evident quantitatively. These results must 
be further discussed for the application to optimization 

of cyclic operation and starting up. 

CONCLUSION 

The basic differential equations for unsteady uni- 

dimensional heat conduction in the composite slab 
were derived in the general form, and solved numeri- 
cally by the finite element method under the boundary 
conditions including the contact resistance between 

the layers. 
The numerical results were observed to agree to both 

Mayer’s analytical solution and the experimental 

results. It was concluded that this numerical analysis 
has a good accuracy and usefulness for such a problem. 
Also, the influence of each factor on temperature 
response became evident by examining the numerical 
and experimental results. 
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+6, ki.j(~.,-,-7;,j)+k,,j+,(-~,j+~,j+l) 
1.1 

I si si I 

+ f di,N,ki,Ni 
RN, - 1; Z*NJ. (A2) 

The first term on the r.h.s. of equation (4) becomes 

ST,&, t) ” = 6 k  a&,,, 
APPENDIX f,bP, ax 1 I.N* 131 

0 
--61,0kl,l 2 

ax 
The integrations of the term on the 1.h.s. and the second 

term on the r.h.s. of equation (4) result in = BI,N~~~(T~,N,-TZ.O)+~~,~~( 

f6i,j 
C,ijpjjSidTj-1 CpijpijSiaTj 
-A+-; 

6 at 3 at 
aT"(x, f) A 

fnWn Bx 
1 

= kv.kn.N. 
xn-1 

= -gn.N.qll+hn-l(Tn-l,~,_,-T.,o). (A3) 

+ &.N, 
%i N PiNtSi az N -, %i N,Pi N,si aT N .t. )#I,( .I 

(Al) After rearrangement of equation (4), use of the identity 
6 at 3 at of Si,j gives 

Ct =AT+B 

where, 

A= 

HMT Vol. 17. No. 8-F 

k 1.1 k I,1 -- - 0 _____ _____ _______ _____________________________________________________ 0 
s1 s1 

k I t k, I+k, 2 k, z A_“_ 
s1 s1 s1 

0. k knN l8.N d-2 

% S” 



882 

C= 

c 

i- 
c 

S. SUGIYAMA, M. NISHIMURA and H. WATANABE 

I1,lPl.lsl c,l.lPr.lst ~-- () ____“_____________________________________ () 
3 6 

pl IPl ISi cc 1 IPl ,+c,, $1 &I c 1.2Pl ZSL 
- -L-L- A’..._‘._ P-.-A_ 

6 3 6 

C,m.N.-l&N,-1% CCpn,N,-l&N -I +Cpn N Pn,N bn Cpn,N,h.N.Sn 
__I _L “d - -.~ --._ _-- 

6 

/ 
0 _______________________ __-___ * 

c 

B= 

i 

T= 

REPONSE TRANSITOIRE EN TEMPERATURE DES PLAQUES COMPOSITES 

Resume-On r&out numeriquement les equations aux derives partielles generales de la conduction 
thermique unidirectionnelle dans des plaques composites, en utilisant la methode des Cl&men&s finis avec 
des conditions aux limites in&ant la resistance de contact entre les couches. 

Les resultats numbriques concernant la temperature transitoire s’accordent bien avec la solution 
analytique du cas simple et avec les resultats experimentaux obtenus pour differentes plaques composites. 
L’effet de chaque facteur sur la rtponse en temperature est d&gage en examinant les resultats numeriques 

et experimentaux. 

TEMPERATURAUSGLEICH IN GESCHICHTETEN PLATTEN 

Zusammenfassung-Die Differentialgleichungen fur instationare eindimensionale Warmeleitung in ge- 
schichteten Platten wurden in allgemeiner Form mit Hilfe der Methode finiter Elemente unter Rand- 
bedingungen gel&& die den Kontaktwiderstand zwischen den Schichten einschlie~en. 

Die Ergebnisse der numerischen LSsung stimmten gut mit der analytischen Lasung fur den einfachen 
Fall und mit experimentellen Ergebnissen fur verschiedene, geschichtrte Platten iiberein. Die Auswirkung 
jeder EinfluDgrGBe auf den Temperaturverlauf wurde durch Analysieren der rechnerischen und 

experimentellen Ergebnisse geklart. 
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HECTAIJWOHAPHAJI TEMIIEPATYPHAB XAPAKTEPMCTMKA COCTABHbIX IlJWiT 
AHHOT~UHR- C IIOMOtAbH) MeTOAa KOHe‘iHbIX 3JleMeHTOB IIOJIyYeHO YHCJICHHOC peJ.IIeHue 06wix 
AH'$&peH_LlHaJIbHbIX YpaBHeHHfi HeCTaUliOHapHOii OAHOMepHOii TetUIOl-lpOBOAHOCYH B COCTaBHbIX 

IIJIHTaX IlpH TpaHW4HblXYCIIOBMRX,YSUTblBa~OlllWX KOHTaKTHOeCOIIpOT)IB~eHHeMe)l(A)'CJIORMA. 

HafiAeHO, 'iTO WfCJEHHble pe3)'JIbTaTbl IlO HeCTaUHOHapHOfi TeMIEpaTypHOZi XapaKTepHCTHKe 

XOpOIJJOCOrJIaC,'H)TCIICaHaJ,HTR'IeCKHM peuleHHeMAJI~lTpOCTO~OCJlWa~UC3KCIIep~MeHT~bHbIMA 

pe3,'JIbTaTaMHA,-,Kpa3~WiHblXCOCTaBHbIXIUIHT. Ha OCHOBeaHaJ,M3a'IHC,IeHHbIXH3KCUepHMeHTaJlb- 
HblXpe3ynbTaTOB)'TOYHeHO BJIHRHAe KaxAOrO $aKTOpa Ha TeMnepaTypHyIO XapaKTepWCTHKy. 


